
QL Assembly Language Mailing List

Issue 5

Norman Dunbar



Copyright ©2018 Norman Dunbar

PUBLISHED BY MEMYSELFEYE PUBLISHING ;-)

http://qdosmsq.dunbar-it.co.uk/downloads/AssemblyLanguage/Issue_005/Assembly_
Language_005.pdf

Licensed under the Creative Commons Attribution-NonCommercial 3.0 Unported License (the
“License”). You may not use this file except in compliance with the License. You may obtain a
copy of the License at http://creativecommons.org/licenses/by-nc/3.0. Unless required
by applicable law or agreed to in writing, software distributed under the License is distributed on an
“AS IS” BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and limitations under the License.

This pdf document was created on 16/7/2020 at 09:40:44.

http://qdosmsq.dunbar-it.co.uk/downloads/AssemblyLanguage/Issue_005/Assembly_Language_005.pdf
http://qdosmsq.dunbar-it.co.uk/downloads/AssemblyLanguage/Issue_005/Assembly_Language_005.pdf
http://creativecommons.org/licenses/by-nc/3.0


Contents

1 Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

1.1 Feedback 9

1.2 Subscribing to The Mailing List 9

1.3 Contacting The Mailing List 10

2 Feedback on Issue 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.1 ASMReformat Comments 11

3 Langton’s Ant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.0.1 The Program Listing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

4 Using the MC68020 - Part 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

4.1 Word and Long Memory Access Need Not Be Even! 27

4.2 Bit Field Instructions 28

4.2.1 Bit Fields . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

4.2.2 BFCHG - Test Bit Field and Change . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2.3 BFCLR - Test Bit Field and Clear . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

4.2.4 BFEXTS - Extract Bit Field Signed . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.2.5 BFEXTU - Extract Bit Field Unsigned . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31



4.2.6 BFFFO - Find First One in Bit Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2.7 BFINS - Insert Bit Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.2.8 BFSET - Test Bit Field and Set . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.2.9 BFTST - Test Bit Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

4.3 Converting Character and Decimal Numbers 33

4.4 Existing Instruction Upgrades 35

4.4.1 Branching and Linking . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.4.2 Division . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.4.3 Multiplication . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.4.4 MOVEC - Move To/From Control Register . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

4.5 Other New Instructions 38

4.5.1 BKPT - Hardware Breakpoint Support . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.5.2 CALLM - Call Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.5.3 CAS and CAS2 - Compare and Swap . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.5.4 CHK2 and CMP2 - Check/Compare Register Against Bounds . . . . . . . . . . . . . . . 40

4.5.5 RTM - Return From Module . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.5.6 Coprocessor Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

5 Improving Langton’s Ant . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5.1 A 68020 Improvement, Perhaps? 43

5.1.1 Bit Field Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

6 This eMagazine is now on Github . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

7 Image Credits . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49



List of Tables

4.1 Register Bit Field Conversion Table . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 5 Byte Bit Field Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
4.3 MC68020 Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37





Listings

3.1 Langtons Ant - Opening Blurb . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.2 Langtons Ant - Equates . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.3 Langtons Ant - Job Header . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

3.4 Langtons Ant - Command and Channel Definitions . . . . . . . . . . . . . . . . . . 15

3.5 Langtons Ant - Trap Subroutines . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.6 Langtons Ant - Start Here . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.7 Langtons Ant - Initialise the World . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.8 Langtons Ant - Initialising Constants . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.9 Langtons Ant - Register Usage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.10 Langtons Ant - Start of Loop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.11 Langtons Ant - Pixel Calculations . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.12 Langtons Ant - Rule 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.13 Langtons Ant - Rule 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.14 Langtons Ant - New Direction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.15 Langtons Ant - Walk On . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.16 Langtons Ant - Plot New Cell Colour . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.17 Langtons Ant - Checking ESC . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.18 Langtons Ant - Delaying Tactics . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.19 Langtons Ant - The Ant’s World . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

4.1 How to Blow Up an MC68008 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28



4.2 Bit Field Negative Offsets Example . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4.3 Example of the BFFFO Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.4 Example of the PACK instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.5 Example of the UNPK instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.6 Example of the CAS Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.7 Example of the CMP2 Instruction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

5.1 Langtons Ant - Existing Bitmap Calculation . . . . . . . . . . . . . . . . . . . . . . 43

5.2 Langtons Ant - 68020 Bitmap Calculation . . . . . . . . . . . . . . . . . . . . . . . 45

5.3 Langtons Ant - Existing Rule 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.4 Langtons Ant - Existing Rule 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5.5 Langtons Ant - 68020 Rule 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

5.6 Langtons Ant - 68020 Rule 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46



1. Preface

1.1 Feedback

Please send all feedback to assembly@qdosmsq.dunbar-it.co.uk. You may also send articles
to this address, however, please note that anything sent to this email address may be used in a future
issue of the eMagazine. Please mark your email clearly if you do not wish this to happen.

This eMagazine is created in LATEXsource format, aka plain text with a few formatting commands
thrown in for good measure, so I can cope with almost any format you might want to send me. As
long as I can get plain text out of it, I can convert it to a suitable source format with reasonable ease.

I use a Linux system to generate this eMagazine so I can read most, if not all, Word or MS Office
documents, Quill, Plain text, email etc formats. Text87 might be a problem though!

1.2 Subscribing to The Mailing List

This eMagazine is available by subscribing to the mailing list. You do this by sending your
favourite browser to http://qdosmsq.dunbar-it.co.uk/mailinglist and clicking on the
link “Subscribe to our Newsletters”.

On the next screen, you are invited to enter your email address twice, and your name. If you wish
to receive emails from the mailing list in HTML format then tick the box that offers you that option.
Click the Subscribe button.

An email will be sent to you with a link that you must click on to confirm your subscription. Once
done, that is all you need to do. The rest is up to me!

assembly@qdosmsq.dunbar-it.co.uk
http://qdosmsq.dunbar-it.co.uk/mailinglist


10 Chapter 1. Preface

1.3 Contacting The Mailing List

I’m rather hoping that this mailing list will not be a one-way affair, like QL Today appeared to be.
I’m very open to suggestions, opinions, articles etc from my readers, otherwise how do I know
what I’m doing is right or wrong?

I suspect George will continue to keep me correct on matters where I get stuff completely wrong, as
before, and I know George did ask if the list would be contactable, so I’ve set up an email address
for the list, so that you can make comments etc as you wish. The email address is:

assembly@qdosmsq.dunbar-it.co.uk

Any emails sent there will eventually find me. Please note, anything sent to that email address will
be considered for publication, so I would appreciate your name at the very least if you intend to
send something. If you do not wish your email to be considered for publication, please mark it
clearly as such, thanks. I look forward to hearing from you all, from time to time.

If you do have an article to contribute, I’ll happily accept it in almost any format - email, text, Word,
Libre/Open Office odt, Quill, PC Quill, etc etc. Ideally, a LATEXsource document is the best format,
because I can simply include those directly, but I doubt I’ll be getting many of those! But not to
worry, if you have something, I’ll hopefully manage to include it.

assembly@qdosmsq.dunbar-it.co.uk


2. Feedback on Issue 4

2.1 ASMReformat Comments

Not long after I published Issue 4 I received some feedback from Wolfgang Lenerz regarding the
code for the ASMReformat program listing, well, to be precise, the listing as published and the
output when run against a source file.

WL: Four traps aren’t defined in the code (io_fline, io_sbyte, io_sstrg, mt_frjob) you
might want to include the equ for these.

ND: I did wonder about this when I was writing the utility. GWASS includes a definitions file
automatically so when I had those equates in the source, I got errors that they were duplicated, so
I had to remove them. I was sure that QMAC did the same thing - but I haven’t had to use that
assembler since I started writing in QL Today all those years ago.

For anyone who needs them, here are the QDOS versions, from Pennell1:

io_fline equ 2
io_sbyte equ 5
io_sstrg equ 7
mt_frjob equ 5

WL: I don’t know about Gwasl, but Qmac doesn’t allow, for the equ directive, the label and the
content to be on different lines:

label equ something

is ok

1The Sinclair QDOS Companion A Guide to the QL Operating System. © Andrew Pennell, 1985

http://qdosmsq.dunbar-it.co.uk/downloads/AssemblyLanguage/Issue_004/Assembly_Language_004.pdf


12 Chapter 2. Feedback on Issue 4

label
equ something

is not ok....

ND: Hmm. I wasn’t aware of this, but as mentioned above, it’s been a long time! Perhaps, in a
forthcoming issue, I could amend the utility to accept a parameter string that prevents this line split
occurring. I’ll look into it and see what I can come up with.

WL: Finally, for Qmac, you need simple "section x" at the start.

ND: This is true, and I think you also need an END at the end as well, if I remember correctly?

Anyway, I was assuming when I wrote the code that you would be passing your own code through
the utility to get proper/my/standard/whatever formatting. so I would assume that you already
have a SECTION x at the start (and an END at the end?) so they should be already there. Unless, of
course, you mean that it doesn’t work for those lines in a source file?

I’ve tested it on my own DJToolkit source, which was originally QMAC based, and it works fine.



3. Langton’s Ant

This program is something I remember writing many years ago when I was working in Ab-
erdeen,which was some time in the 11 years prior to 1996 when I moved South of the Border, to
deprive an Englishman of a woman and a job!1

Back then, I wrote it in C using Borland Turbo C++ Version 3.0 - probably the first program I ever
wrote in C on a PC.

Anyway, it’s a demonstration of something called Emergent Behaviour which is something that
emerges from some set of rules, but what emerges was not specifically programmed into the rules.

The way birds flock together, but manage not to crash into one another, for example, is based on a
couple of rules

• Fly in the same direction as your neighbour;
• Don’t fly too close nor too far away;
• Don’t fly into things.

(Or something similar). A program was written some years ago that embodied those rules and the
result was a flock of “boids” as the program was called. It’s quite famous.

Anyway, Langton’s Ant is another one of those, it has only two rules:

• If you are on a white cell, colour it black, turn right, step forward;
• If you are on a black cell, colour it white, turn left, step forward

That’s all there is to it.

3.0.1 The Program Listing

I coded this program in SuperBASIC first of all, just to get my head around the algorithm. When run
on QPC on my 10 year old laptop, it ran pretty damned quickly. And yes, the emergent behaviour

1Joke!



14 Chapter 3. Langton’s Ant

was there after about 10,000 steps, as expected.2

Anyway, I then coded it in Assembly and was wondering just how much faster it would be. The
answer? Pretty damned fast. I had to slow it down by inserting a one frame suspension of the job
which actually made it run slower than SuperBASIC! But that was then too slow, so I ended up
with a delay loop3 instead.

1 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
2 ; LANGTON’ S ANT
3 ;
4 ; A s m a l l r o u t i n e t o d e m o n s t r a t e how emergen t b e h a v i o u r can , ahem ,
5 ; emerge from s i m p l e r u l e s .
6 ;
7 ; See Wik iped i a : h t t p s : / / en . w i k i p e d i a . o rg / w ik i / Langton ’ s _ a n t
8 ;
9 ; The a n t l i v e s i n a wor ld which i s a c e r t a i n s i z e wide and deep and

10 ; t h e ends wrap around . I t s t a r t s o f f i n t h e middle , and walks i n a
11 ; downward d i r e c t i o n − i t makes no d i f f e r e n c e though , t h e b e h a v i o u r
12 ; w i l l s t i l l emerge .
13 ;
14 ; I f t h e a n t l a n d s on a c e l l which i s whi te , i t must t u r n i t b l ack ,
15 ; t u r n r i g h t , and walk on t o t h e n e x t c e l l i n t h a t new d i r e c t i o n .
16 ;
17 ; I f t h e c e l l was b lack , t h e a n t must t u r n i t whi te , t u r n l e f t , and
18 ; walk on t o t h e n e x t c e l l i n t h e new d i r e c t i o n .
19 ;
20 ; Tha t i s a l l t h e r u l e s . Run t h e program and s e e what happens !
21 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
22 ; Norman Dunbar
23 ; 17 F e b r u a r y 2018 .
24 ;
25 ; Th i s s o u r c e code i s open s o u r c e . Use i t a s you s e e f i t and i f you
26 ; improve i t , t e l l e v e r y o n e and l e t them have t h e new s o u r c e !
27 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Listing 3.1: Langtons Ant - Opening Blurb

As ever, the code above introduces the program. Not much to see here, but there is a reference to
the Wikipedia article about Langton’s Ant.

28 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
29 ; The s i z e s must be a power o f two . We need t h i s l a t e r when we l i m i t
30 ; them t o a n y t h i n g between 0 and t h e s i z e minus 1 . I f t h e y a r e n o t a
31 ; power o f two , i t doesn ’ t work t h e way I ’ ve done t h i n g s l a t e r !
32 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
33 s i z e _ x
34 equ 512 ; P i x e l s a c r o s s ( wid th )
35 s i z e _ y
36 equ 256 ; P i x e l s down ( h e i g h t )
37
38 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
39 ; Co lo r names , b e t t e r t h a n g u e s s i n g t h e c o l o u r v a l u e s . The ESC key i s
40 ; d e f i n e d here , o r i t s b i t number i n D1 a f t e r an IPC c a l l .
41 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

2See the Wikipedia article at https://en.wikipedia.org/wiki/Langton’s_ant
3And delay loops burn CPU cycles and keep the computer busy where suspending the job would release resources

and let other applications run better.

https://en.wikipedia.org/wiki/Langton's_ant


15

42 b l a c k
43 equ 0 ; Black c e l l c o l o u r
44 r e d
45 equ 2 ; I t ’ s a r e d a n t !
46 w h i t e
47 equ 7 ; White c e l l c o l o u r
48 g r e e n
49 equ 4 ; The wor ld c o l o u r
50 e s c
51 equ 3 ; B i t number f o r ESC

Listing 3.2: Langtons Ant - Equates

The next section of code, above, are the equates that are needed. Please note that the two sizes,
size_x and size_y define the maximum width and height of the world in which the ant lives.
They must be a power of two because if they are not, bad stuff will happen later.

Various colours are also defined here, plus the bit that we need to check to see if there was a press
of the ESC key.

52 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
53 ; S t a n d a r d Job s t a r t .
54 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
55 s t a r t
56 b r a . s Langton
57 dc . l 0
58 dc .w $4afb
59
60 name
61 dc .w nameEnd−name−2
62 dc . b " Langton ’ s Ant "
63 nameEnd
64 equ *

Listing 3.3: Langtons Ant - Job Header

The code above is the standard QDOSMSQ job header. You should be getting used to seeing these
by now!

66 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
67 ; BLOCK command p a r a m e t e r b l o c k .
68 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
69 Block
70 dc .w 1 ,1
71 xPos
72 dc .w S iz e_ x / 2 , S i ze_ y / 2 ; 256 , 128 i n i t i a l c o o r d i n a t e s
73
74 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
75 ; Check ESC key p r e s s e d IPC command s t r i n g .
76 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
77 ipc_command
78 dc . b 9 , 1 , 0 , 0 , 0 , 0 , 1 , 2 ; KEYROW( 1 )
79
80 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
81 ; Sc re en c h a n n e l name and window d e f i n i t i o n b l o c k .
82 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
83 s c r _ d e f
84 dc .w 4



16 Chapter 3. Langton’s Ant

85 dc . b ’ sc r_ ’ ; No i n p u t needed , so SCR_
86
87 winDef
88 dc .w s i z e _ x
89 dc .w s i z e _ y
90 dc .w (512− s i z e _ x ) / 2 ; Assumes 512 max wid th
91 dc .w (256− s i z e _ y ) / 2 ; Assumes 256 max d e p t h

Listing 3.4: Langtons Ant - Command and Channel Definitions

The section of code above sets up a few commands, the first is the BLOCK command to draw a 1
pixel by 1 pixel block in the middle of the ant’s world.

Next to that is a command to allow the IPC processor to read the keyboard, specifically the
equivalent of KEYROW(1) which is where we find the ESC key.

Finally, we have the definition for a SCR_ channel and a block of words to redefine the window we
will set up on that channel. We do it this way because we only need to set the sizes of the ant’s
world, and hopefully, the assembler will work out the window definition for us. Lazy? Me?

93 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
94 ; S u b r o u t i n e s t o do a t r a p , t e s t D0 and d i e h o r r i b l y i f t h e r e was
95 ; an e r r o r .
96 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
97 doTrap1
98 t r a p #1
99 b r a . s t e s t D 0

100
101 doTrap2
102 t r a p #2
103 b r a . s t e s t D 0
104
105 doTrap3
106 t r a p #3
107
108 t e s t D 0
109 t s t . l d0
110 bne . s s u i c i d e
111 r t s
112
113 s u i c i d e
114 move . l d0 , d3
115 moveq # m t _ f r j o b , d0
116 moveq #−1,d1
117 t r a p #1

Listing 3.5: Langtons Ant - Trap Subroutines

The code above is a set of three simple subroutines to execute a trap instruction, check the error
return and to kill the job if an error occurred.

120 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
121 ; The main s t a r t i n g p l a c e . Open a s c r _ c h a n n e l . The c h a n n e l ID w i l l
122 ; s t a y p r o t e c t e d i n A0 . L t h r o u g h o u t t h e r e s t o f t h e code .
123 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
124 Langton
125 l e a s c r _ d e f , a0 ; Sc r ee n c h a n n e l
126 moveq # io_open , d0



17

127 moveq #−1,d1
128 moveq #0 , d3
129 b s r . s doTrap2
130
131 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
132 ; The s c r e e n c h a n n e l i s open , make t h e window t h e r e q u e s t e d s i z e .
133 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
134 Window
135 moveq # sd_wdef , d0 ; Window d e f i n i t i o n
136 moveq #0 , d1
137 moveq #0 , d2
138 moveq #−1,d3
139 l e a winDef , a1
140 b s r . s doTrap3
141
142 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
143 ; S e t t h e p a p e r t o g r e e n .
144 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
145 Pape r
146 moveq # s d _ s e t p a , d0 ; S e t p a p e r t o g r e e n
147 moveq # green , d1
148 b s r . s doTrap3
149
150 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
151 ; And c l e a r t h e e n t i r e s c r e e n .
152 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
153 Cls
154 moveq # s d _ c l e a r , d0 ; Cls
155 b s r . s doTrap3

Listing 3.6: Langtons Ant - Start Here

This is the beginning of the real code. We open the channel to the screen, redefine it using the
window definition block above, which has been filled in with the appropriate sizes by the assembler,
set the paper to green and clear the screen.

Easy stuff, but anyone following http://qlforum.co.uk will know that I had a few problems and
needed help. I was calling the wrong trap instructions, so instead of opening a channel, I was
creating a weird job instead. Not good when you try to set paper colour on a job id rather than a
channel id!

157 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
158 ; The c e l l s b i tmap d e f i n e s t h e an t ’ s wor ld . A b i t i s c l e a r f o r w h i t e
159 ; o r s e t f o r b l a c k . I n i t i a l l y , a l l c e l l s a r e w h i t e . I t makes no
160 ; d i f f e r e n c e − t r y s e t t i n g t h e c e l l s t o FF ( a l l b l a c k ) and you ’ l l s e e
161 ; t h e same r e s u l t s .
162 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
163 c l e a r C e l l s
164 l e a c e l l s , a3 ; The an t ’ s wor ld l i v e s h e r e
165 move . l a3 , a2 ; Use A2 f o r t h e loop
166 moveq #0 , d0 ; Byte c o u n t e r
167 move .w winDef ( pc ) , d0 ; Get wid th i n p i x e l s
168 l s r .w #3 , d0 ; C a l c u l a t e wid th i n b y t e s
169 mulu winDef +2( pc ) , d0 ; Times h e i g h t i n p i x e l s
170 b r a . s c l e a r N e x t
171
172 c l e a r L o o p

http://qlforum.co.uk


18 Chapter 3. Langton’s Ant

173 c l r . b ( a2 ) + ; C l e a r one b y t e
174
175 c l e a r N e x t
176 db ra d0 , c l e a r L o o p ; And t h e r e s t

Listing 3.7: Langtons Ant - Initialise the World

The ant’s world is determined by a bitmap where one bit represents the white or black colour of a
cell within the world. The code above clears out the bitmap to ensure that no random bits are to be
found. The ant’s world is coloured white at the start.

However, feel free to change this to black and fill each byte with $FFhex instead, if you wish. It is
the rules that determine the behaviour.

It should be noted that the size of the ant’s world should not exceed a word sized register when
multiplying. The calculation is height ∗ (width/8) because each byte represents 8 pixels across.

179 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
180 ; I n i t i a l i s e A2 t o p o i n t a t t h e b l o c k command p a r a m e t e r s . We need i t
181 ; i n A1 a c t u a l l y , b u t A1 g e t s c o r r u p t e d so we save i t i n A2 . We a l s o
182 ; l o a d up t h e i n i t i a l p o s i t i o n o f t h e a n t i n t o D2 . The t o p word of D2
183 ; i s t h e Across c o o r d i n a t e , t h e low word i s t h e Down c o o r d i n a t e . D5
184 ; i s s e t t o zero , f o r DOWN, which i s t h e d i r e c t i o n t h e a n t i s f a c i n g .
185 ; Try c h a n g i n g i t , s e e what happens .
186 ; A5 i s s e t t o t h e IPC command s t r i n g , which we need i n A3 l a t e r . So
187 ; a s A3 i s p r e s e r v e d t h r o u g h an IPC c a l l , we can EXG t h e s e two .
188 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
189 l e a Block , a2 ; Needed i n A1 l a t e r
190 move . l xpos ( pc ) , d2 ; Hi = Across , Lo = Down
191 moveq #0 , d5 ; D i r e c t i o n a n t i s wa lk ing
192 l e a ipc_command , a5 ; Read KEYROW 1 f o r ESC key

Listing 3.8: Langtons Ant - Initialising Constants

The code above initialises some constants within the program. A2 which is never corrupted
throughout the program, holds the address of the BLOCK command. We actually need that in A1 but
that gets corrupted in places, so A2 is a good place to keep it safe.

D2 is initialised with the initial coordinates which have been set to be half the width and half the
height of the ant’s world. The upper word of D2 is the x or across coordinate and the lower word is
the y or down coordinate.

D5 holds the direction that the ant is facing. It is initially facing down, but this can be changed if
you wish, make sure you set it to a value between zero and three though.

Finally, A5 holds the address of the IPC command to read the keyboard. This is actually something
we need in A3 but that is needed elsewhere, so A5 was a handy place to keep it. We will swap those
two registers over as and when we need to.

Talking of registers...

194 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
195 ; REGISTERS USED BEYOND THIS POINT
196 ;
197 ; D0 = Trap codes .
198 ; D1 = Ant o r C e l l c o l o u r , red , w h i t e o r b l a c k .
199 ; D2 = Hi word = Across , Lo word = Down c o o r d i n a t e s .
200 ; D3 = Timeout f o r t r a p s . −1 a lways .



19

201 ; D4 = B i t number w i t h i n C e l l s bi tmap , f o r t h e c u r r e n t p i x e l .
202 ; D5 = D i r e c t i o n i n d i c a t o r . 0=Down , 1= Lef t , 2=Up , 3= R i g h t .
203 ; D6 = Used t o c a l c u l a t e A4 and D4 each t ime t h r o u g h t h e loop .
204 ; D7 = Copy of D i r e c t i o n , used i n wa lk ing t o n e x t c e l l .
205 ;
206 ; A0 = Channel Id
207 ; A1 = Used f o r t r a p c a l l s .
208 ; A2 = P o i n t e r t o BLOCK command i n j o b code . ( Used i n A1 . )
209 ; A3 = P o i n t e r t o C e l l s b i tmap .
210 ; A4 = P o i n t e r t o b y t e i n C e l l s where c u r r e n t c o o r d i n a t e s i s found .
211 ; A5 = P o i n t e r t o IPC command t o r e a d KEYROW 1 f o r ESC key .
212 ; A6 = Rese rved f o r QDOS/SMSQ
213 ; A7 = S t a c k P o i n t e r .
214 ;
215 ; C e l l s Bitmap .
216 ;
217 ; The c e l l s a r r a y o f b y t e s measures s i z e _ y * ( s i z e _ x / 8 ) b y t e s
218 ; and h o l d s 1 b i t f o r e v e r y c e l l i n t h e s c r e e n (512 * 256 d e f a u l t )
219 ; w i th a z e r o b i t meaning a w h i t e c e l l and a 1 b i t b e i n g b l a c k .
220 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Listing 3.9: Langtons Ant - Register Usage

The comments above show the usage of the registers in the remainder of the program. As you can
see, I’m just about using all of them for one thing or another.

222 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
223 ; And h e r e we s t a r t t h e main loop . We a d j u s t t h e a n t c o o r d i n a t e s t o
224 ; f a l l i n t o r a n g e . Th i s i s why we used a power o f two as t h e s i z e s a s
225 ; i t makes i t e a s i e r t o keep t h e c o o r d i n a t e s i n r a n g e 0 t o s i z e − 1 .
226 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
227 antWalk
228 a n d i .w # s i z e _ y −1,d2 ; Make down 0 t o s i z e _ y −1
229 swap d2
230 a n d i .w # s i z e _ x −1,d2 ; Make a c r o s s 0 t o s i z e _ x −1
231 swap d2
232 move . l d2 , 4 ( a2 ) ; Update b l o c k c o o r d i n a t e s
233
234 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
235 ; We have saved t h e a d j u s t e d c o o r d i n a t e s i n t h e BLOCK command ’ s
236 ; p a r a m e t e r s , p l o t t h e c u r r e n t a n t p o s i t i o n wi th a r e d p i x e l . Good
237 ; l u c k s e e i n g t h a t , i t moves p r e t t y q u i c k l y !
238 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
239 p l o t A n t
240 moveq # s d _ f i l l , d0 ; Block command
241 moveq # red , d1 ; I t ’ s a r e d a n t o f c o u r s e !
242 move . l a2 , a1 ; Block p a r a m e t e r b l o c k
243 b s r doTrap3 ; Won’ t r e t u r n on e r r o r

Listing 3.10: Langtons Ant - Start of Loop

This is the code that runs our ant’s world. Because we made the width and height of the world a
power of two, we can subtract 1 to get a mask that will ensure that it will remain in range and this
also helps in wrapping the ant’s world around, top and bottom as well as left and right.

Given that width, for example, is 512, then ANDing the across coordinate with 511 will cause it to
be in range 0 to 511 always. If it becomes 512 then and will reset it to 0. If it goes to minus 1, the



20 Chapter 3. Langton’s Ant

and will reset it to 511 - and so, we have a simple way of wrapping the coordinates.
245 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
246 ; We need t o g e t t h e c u r r e n t c e l l a t t h i s p o i n t . We want t h e a d d r e s s
247 ; o f t h e c u r r e n t b y t e i n A4 and t h e number o f t h e b i t i n t h a t b y t e i n
248 ; D4 . At t h i s p o i n t we have :
249 ;
250 ; A3 = t h e c e l l s b i tmap s t a r t a d d r e s s .
251 ; D2 = Across | Down c o o r d i n a t e s .
252 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
253
254
255 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
256 ; F i r s t work o u t t h e b i t number i n t h e c e l l ’ s b y t e . Th i s i s s im p ly
257 ; 7 − ( a c r o s s c o o r d i n a t e MOD 8) .
258 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
259 bi tNumber
260 move . l d2 , d6 ; Copy Across | Down c o o r d s
261 swap d6 ; Down | Across
262 move .w d6 , d4 ; Copy Across c o o r d i n a t e t o D4
263 a n d i .w #7 , d4 ; Mod 8 = 0 t o 7
264 neg .w d4 ; −7 t o 0
265 addq .w #7 , d4 ; D4 .W = b i t number
266
267 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
268 ; The b y t e w i t h i n t h e row , which we c a l c u l a t e soon , i s c a l c u l a t e d as
269 ; ( a c r o s s c o o r d i n a t e DIV 8) . Easy .
270 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
271 byteNumber
272 l s r .w #3 , d6 ; Across d i v 8
273
274 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
275 ; The c o r r e c t row number i n t h e c e l l s b i tmap i s t h e Down c o o r d i n a t e
276 ; m u l t i p l e d by ( s i z e _ x DIV 8) . Th i s shou ldn ’ t exceed a word s i z e . The
277 ; r e s u l t i s added t o A3 which i s t h e s t a r t a d d r e s s o f t h e c e l l s
278 ; b i tmap and l o a d e d i n t o A4 as t h e b y t e a d d r e s s t h a t we want .
279 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
280 doRow
281 move .w # s i z e _ x , d7 ; P i x e l s a c r o s s
282 l s r .w #3 , d7 ; Now b y t e s a c r o s s
283 mulu d2 , d7 ; Times down c o o r d i n a t e
284 l e a 0 ( a3 , d7 .w) , a4 ; Address o f c o r r e c t row
285 adda .w d6 , a4 ; C o r r e c t b y t e i n row
286
287 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
288 ; Given t h e b y t e a d d r e s s i n A4 and t h e b i t number i n D4 , we can now
289 ; t e s t t h a t i n d i v i d u a l b i t . A z e r o i s w h i t e w h i l e a 1 i s b l a c k .
290 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
291 b t s t d4 , ( a4 ) ; 0 = whi te , 1 = b l a c k

Listing 3.11: Langtons Ant - Pixel Calculations

The code above takes the two coordinates of the ant’s current cell and from them works out which
bit in the bitmap represents that cell.

There are four things we need:

• The base address of the cells bitmap. This is held in A3.



21

• The correct “row” in the bitmap; This will be in D7.
• The correct byte within the row; This will be in D6
• The correct bit within the byte; This will be in D4.

The calculations are reasonably simple:

D4 = 7− (Across mod 8)

D6 = (Across div 8)

D7 = Down∗ (width div 8)

Once we have calculated all those, we need simply to load the byte address into A4 and the bit
number into D4 and then we can test the bit to see if it is black or white, with zero being white.

293 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
294 ; Rule 1 : I f t h e c e l l i s whi te , t u r n i t b l ack , r i g h t t u r n , walk on .
295 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
296 ru l eOne
297 bne . s ruleTwo
298 b s e t d4 , ( a4 ) ; Turn i t b l a c k i n t h e b i tmap
299 moveq # b lack , d1 ; Colour f o r BLOCK command
300 subq . b #1 , d5 ; D i r e c t i o n − 1 = r i g h t
301 b r a . s d o D i r e c t i o n ; P r e p a r e t o walk on

Listing 3.12: Langtons Ant - Rule 1

This is the code for rule 1. If the cell that the ant arrived on is white then colour it black and make a
right turn by subtracting 1 from the direction. We don’t actually colour the cell here, we simply set
the cell’s new colour, black, in D1 ready to be plotted below.

303 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
304 ; Rule 2 : I f t h e c e l l i s b lack , t u r n i t whi te , l e f t t u r n , walk on .
305 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
306 ruleTwo
307 b c l r d4 , ( a4 ) ; Turn i t w h i t e i n t h e b i tmap
308 moveq # whi te , d1 ; Co lour f o r BLOCK command
309 addq . b #1 , d5 ; D i r e c t i o n + 1 = l e f t

Listing 3.13: Langtons Ant - Rule 2

This is the code for rule 2. If the cell that the ant arrived on is black then colour it white and make a
left turn by adding 1 to the direction. Again there is no actual colouring here, we simply set D1 to
be white, ready for later.

311 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
312 ; We have a d j u s t e d t h e d i r e c t i o n . Make s u r e we r e s t r i c t i t t o 0 − 3 .
313 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
314 d o D i r e c t i o n
315 a n d i . b #3 , d5 ; R e s t r i c t t o 0 t o 3
316 move . b d5 , d7 ; Copy new d i r e c t i o n
317
318 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
319 ; Ready t o walk on i n t h e new d i r e c t i o n .
320 ;
321 ; The d i r e c t i o n s a r e :
322 ;
323 ; UP
324 ; 2



22 Chapter 3. Langton’s Ant

325 ; LEFT 3 1 RIGHT
326 ; 0
327 ; DOWN
328 ;
329 ; So , i f d i r e c t i o n i s up ( 2 ) t h e n t u r n r i g h t = 1 and t u r n l e f t = 3
330 ;
331 ; P l u s 1 = t u r n l e f t
332 ; Minus 1 = t u r n r i g h t .
333 ;
334 ; I f d i r e c t i o n = down = 0 t h e n Down + 1
335 ; I f d i r e c t i o n = r i g h t = 1 t h e n Across + 1
336 ; I f d i r e c t i o n = up = 2 t h e n Down − 1
337 ; I f d i r e c t i o n = l e f t = 3 t h e n Across − 1
338 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Listing 3.14: Langtons Ant - New Direction

Most of the code above is simply comments explaining the directions and how adding or subtracting
1 from the current direction equates to a left or right turn. However, we do have to be careful to
make sure that the direction, in D5 is restricted to the values 0 through 3 only.

Because we are going to mess about with the new direction value, in the code below, we copy it to
a working register, in this case, D7.

340 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
341 ; Check t h e d i r e c t i o n f o r Down , i f n o t t h e n sk ip , o t h e r w i s e a d j u s t
342 ; t h e Down c o o r d i n a t e by +1 .
343 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
344 doWalk
345 bne . s t r y R i g h t
346
347 doDown
348 addq .w #1 , d2 ; Down + 1
349 b r a . s d o P l o t
350
351 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
352 ; Check i f t h e new d i r e c t i o n i s R i g h t . I f so , a d j u s t t h e Across
353 ; c o o r d i n a t e by +1 .
354 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
355 t r y R i g h t
356 subq . b #1 , d7
357 bne . s t ryUp
358
359 doRigh t
360 swap d2 ; Down | Across
361 addq .w #1 , d2 ; Across + 1
362 swap d2 ; Across | Down
363 b r a . s d o P l o t
364
365 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
366 ; Check i f t h e new d i r e c t i o n i s Up . I f so , a d j u s t t h e Down c o o r d i n a t e
367 ; by −1.
368 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
369 t ryUp
370 subq . b #1 , d7
371 bne . s d o L e f t ; Must be l e f t
372



23

373 doUp
374 subq .w #1 , d2 ; Down − 1
375 b r a . s d o P l o t
376
377 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
378 ; The new d i r e c t i o n must be L e f t . A d j u s t t h e Across c o o r d i n a t e by −1.
379 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
380 d o L e f t
381 swap d2 ; Down | Across
382 subq .w #1 , d2 ; Across − 1
383 swap d2 ; Across | Down

Listing 3.15: Langtons Ant - Walk On

Because we just ANDed the new direction to keep it in range, we might have set the Z flag. If so, the
new direction is Down. In that case we add 1 to the current down coordinate in the low word of D2,
and skip over the rest of this code section.

Assuming we are not in the downward direction, we check for a heading towards the right. Subtract-
ing 1 will set the Z flag if we are now facing right. If so, we add 1 to the current across coordinate
in the high word of D2 and skip the remaining processing.

If we are not facing to the right, are we facing up? Again, subtracting 1 from D7 will set the Z flag.
If so, we need to subtract 1 from the ant’s current down coordinate in register D2’s low word.

Finally, we can only be facing to the left. We have to subtract 1 from the ant’s position in the across
direction, which is the high word of register D2.

We are now ready to take a step in the new direction as set in D2 but first we have to colour the
current cell, which happens to be red at the moment, black or white according to register D1.

385 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
386 ; We can o v e r w r i t e t h e r e d a n t a t t h e c u r r e n t c o o r d i n a t e s wi th e i t h e r
387 ; a b l a c k o r a w h i t e c e l l . When we g e t here , D1 h o l d s t h e c o r r e c t
388 ; c o l o u r .
389 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
390 d o P l o t
391 moveq # s d _ f i l l , d0 ; Block command
392 move . l a2 , a1 ; Block p a r a m e t e r b l o c k
393 b s r doTrap3 ; Won’ t r e t u r n on e r r o r
394
395 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
396 ; We have o v e r w r i t t e n t h e c u r r e n t c o o r d i n a t e , u p d a t e t h e BLOCK
397 ; p a r a m e t e r s wi th t h e new c o o r d i n a t e s − t h i s i s e f f e c t i v e l y a s i n g l e
398 ; s t e p i n t h e new d i r e c t i o n .
399 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
400 nowMove
401 move . l d2 , 4 ( a2 ) ; Update c o o r d i n a t e s

Listing 3.16: Langtons Ant - Plot New Cell Colour

The code above plots a white or black cell over the red pixel at the ant’s original position4 with a
black or white pixel, depending on which of the two rules were activated by the ant’s new position.

Once we have plotted the current cell in the correct black or white colour, we store the new
coordinates for the ant in the BLOCK command’s parameter, ahem, block. This means that when

4To be honest, the program runs so quick that you almost never see the red ant in the original plot but if you slow it
right down, you might see it better.



24 Chapter 3. Langton’s Ant

we next pass through the loop, the ant’s new coordinates will be plotted in red again, showing the
ant’s new position.

403 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
404 ; Read t h e keyboard and check on t h e ESC key . I f p r e s s e d , we a r e done
405 ; h e r e . I f n o t p r e s s e d , go around a g a i n a f t e r s u s p e n d i n g f o r a few
406 ; f r am es .
407 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
408 hadEnough
409 move .w d5 ,−( a7 ) ; D i r e c t i o n g e t s c o r r u p t e d .
410 exg a3 , a5 ; We need t h e IPC command i n A3
411 moveq #mt_ipcom , d0 ; IPC command coming up
412 b s r doTrap1 ; Dies on e r r o r
413 move .w ( a7 ) + , d5 ; R e s t o r e d i r e c t i o n
414 exg a3 , a5 ; C e l l s a d d r e s s i n A3 a g a i n
415 b t s t # esc , d1 ; ESC p r e s s e d ?
416 beq hangAbout ; No , pause t h e n go around
417 moveq #0 , d0 ; Yes , show no e r r o r s
418 b r a s u i c i d e ; K i l l my se l f

Listing 3.17: Langtons Ant - Checking ESC

This section of code checks if the ESC key is being pressed, once around the main loop. Unusually,
this call to QDOSSMSQ corrupts register D5 so we need to preserve it on the stack during the
call. It also helps if you restore it afterwards - which I forgot to do and enjoyed many happy hours
debugging a strange bug where the code ran for a while, then simply stopped.

420 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
421 ; Delay p r o c e s s i n g f o r a few c l o c k s . Wi thou t t h i s , t h e j o b has p r e t t y
422 ; much f i n i s h e d by t h e t ime you g e t t o s e e t h e s c r e e n !
423 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
424 hangAbout ; b r a antWalk ; Uncomment f o r f u l l speed !
425 moveq #3 , d0 ; A d j u s t i f t o o slow / f a s t
426
427 d0Loop moveq #−1,d1 ; I n n e r loop c o u n t e r
428
429 d1Loop nop ; Delay a b i t
430 nop ; Delay a b i t more
431 db ra d1 , d1Loop ; End i n n e r loop
432 db ra d0 , d0Loop ; End o u t e r l oop
433
434 b r a antWalk ; Go around

Listing 3.18: Langtons Ant - Delaying Tactics

When I first wrote this assembly version, I didn’t have a delay. The code pretty much finished
before the first appearance of the screen so I had to slow it down.

Initially I suspended the job for 1 frame, but that slowed it down quite a bit, too slow in fact - my
SuperBASIC version was much quicker!

In the end, I slowed it down with a pair of NOPs executed 3∗65536 times. If your QL or emulator
is too slow (or still too fast) adjust the value in D0 to suit.

If you want to see exactly how fast the code is with no delays, uncomment the code at label
hangAbout and be amazed!

436 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−



25

437 ; Th i s i s t h e an t ’ s wor ld . I t i s a b i tmap r e p r e s e n t i n g t h e c e l l s t h a t
438 ; t h e a n t walks ove r . Each b i t d e f i n e s t h e c o l o u r o f a c e l l . Zero i s
439 ; w h i t e and 1 i s b l a c k .
440 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
441 c e l l s
442 ds . b s i z e _ y * ( s i z e _ x / 8 )

Listing 3.19: Langtons Ant - The Ant’s World

The final part of the listing simply defines a world for the ant. This world consists of one bit per
cell and as there are 8 bits (or cells) per byte across the world, we divide by 8 to get the correct
number of bytes.

We don’t divide for the depth as we need one row per cell in the downward direction.

So that’s it. Download the code (or type it in!) from the usual location - http://qdosmsq.dunbar-
it.co.uk/downloads/AssemblyLanguage/Issue_005/ - assemble it GWASL works fine - and EXEC it.
It will run for a bit creating what looks a fairly random pattern on the screen, but then, after about
10,000 iterations of the antWalk loop, it will head off in a straight line for no apparent reason. This
is the emergent behaviour from two simple rules.

http://qdosmsq.dunbar-it.co.uk/downloads/AssemblyLanguage/Issue_005/
http://qdosmsq.dunbar-it.co.uk/downloads/AssemblyLanguage/Issue_005/




4. Using the MC68020 - Part 2

In the last issue, we took a long look at the addressing modes that are now available when using an
MC68020 processor as found in QPC - and possibly, but I don’t yet know - in other emulators too.
The old BBQL1 uses an MC68008 and cannot cope with the new stuff.

To assemble these 62020 instructions, you need a copy of Gwass available from George’s web site.2

One problem I have noticed when using the 68020 instructions, when debugging with QMON, it
sometimes gets a tad confused as to exactly which instruction it is executing! Given the age of
QMON (and other monitor programs & debuggers) it’s hardly surprising that it knows nothing
about the 68020, it was current when the 68008 was still de-rigeur!

Here are the subjects I will cover in this issue, in relation to the 68020:

• Word and Long memory accessing need no longer be on an even address.
• New bit field instructions.
• Instructions to convert between character and decimal numbers.
• Upgrades to existing instructions.
• New instructions - those not already covered above.

4.1 Word and Long Memory Access Need Not Be Even!

This is something that I’ve been quietly using and never noticed for a while, at least since QPC was
upgraded, with George’s help and input, to use a 68020 processor.

Once that happened, any time that I inadvertently accessed a word or long sized memory access,
nothing happened! In the old days, and on the BBQL itself, the 68008 would have died horribly
when that happened.

For example:
1Black Box QL
2http://gwiltprogs.info/page2.htm

http://gwiltprogs.info/page2.htm
http://gwiltprogs.info/page2.htm


28 Chapter 4. Using the MC68020 - Part 2

1 s t a r t
2 l e a oddAddress , a1
3 move .w ( a1 ) , d0
4 . . .
5
6 dc . b 0 ; Th i s s h o u l d c a u s e an odd a d d r e s s
7
8 oddAddress
9 equ *

Listing 4.1: How to Blow Up an MC68008

Of course, it doesn’t really cause the processor a problem, it simply follows its programming
and raises an Address Error Exception. Unfortunately, the QL’s handling of such an exception is
somewhat flawed and this will cause either a complete and utter lock up, or something far worse.

On QPC and on other computers or emulators with an MC68020 processor, the address exception
no longer happens.

4.2 Bit Field Instructions

The M68000 family architecture supports variable-length bit field operations on fields of up to 32
bits - in a register - and almost unlimited width in memory. These instructions can be quite handy,
as will be shown later, but first, what exactly is a bit field?

4.2.1 Bit Fields

A bit field is simply a number of consecutive bits in an effective address. A bit field is always
specified in curly brackets ‘{’ and ‘}’ and there are two parts, the offset and the width, separated by
a colon:

{offset:width}

The offset is the first bit numbering starts at zero for bit 31 and ends up at 31 for bit zero - beware!3

You can calculate the desired starting bit number by subtracting the highest bit you want from 31.
So, for example, if you want bits 15, 14, 13, 12 and 11 of a register, subtract 15 from 31 to get 16.
16 would be the offset and there are 5 bits, so the bit field specification for the appropriate opcode,
would be:

{16:5}

For example, in many opcodes, the size of the operand - .B, .W or .L - is specified in bits 5 and
6 of the opcode instruction word in memory.This is therefore a 2 bit wide bit field, starting at bit
31−6 = 25 and would be represented as follows:

{25:2}

This would be tagged onto the end of one of the new bit field instructions.

You should note that although the bits number from the left, bit 0 is the most significant bit and
bit 32 the least significant bit, the bit fields start at the given offset and continue towards the least

3This really does my head in! All those years of counting from the right, now I have to start counting from the left as
well.



4.2 Bit Field Instructions 29

significant bit for the defined width. This is the complete reverse of the bit numbering in the
registers normally.

Table 4.1 is a handy conversion table. Just look for the bit number in a register that you want to
start from and find the bit field offset value in the row above (or below) it.

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Table 4.1: Register Bit Field Conversion Table

For example, to start a bit field in register bit 7, we find 7 on the bottom row with 24 above it. So
the offset part of our bit field will be 24. Equally, if we wanted to start from register bit 20, we find
that on the top row with 11 below it, so 11 is our desired offset. Easy?

Offsets

The offset can be specified as a number from 0 to 31, no other numeric literals are permitted.
However, the offset can also be a register name and in that case, all 32 bits can be used, giving an
offset of anything from −231 to 232 −1).

These rather large offsets are only for instructions acting on memory locations. It is rather difficult
to imagine what a negative offset on a data register, for example, would resolve to!

If an address register, for example, holds a value that is used as the effective address in the
instructions, then that is known as the base address. The most significant bit, bit 7, of the base
address is offset zero in any bit field. All bit fields are relative to this particular bit.

Negative offsets are fairly simple to use. Assume you have the following code:

1 s t a r t
2 l e a baseAddress , a1 ; Base a d d r e s s
3 b f e x t u ( a1 ) { 0 : 8 } , d1 ; D1 g e t s $12
4 ; ; ; ; b f e x t u ( a1 ) { −32:8} , d2 ; WILL NOT ASSEMBLE!
5 move . l #−32 , d2 ; Try aga in , o f f s e t
6 b f e x t u ( a1 ) { d2 : 8 } , d2 ; D2 g e t s $9A
7 move . l #24 , d7 ; O f f s e t
8 move . l #4 , d6 ; Width
9 b f e x t u ( a1 ) { d7 : d6 } , d3 ; D3 g e t s $07

10 . . .
11
12 negAddress
13 dc . l $ 9 a b c d e f f ; N e g a t i v e o f f s e t h e r e
14 b a s e A d d r e s s
15 dc . l $12345678 ; Base a d d r e s s h e r e

Listing 4.2: Bit Field Negative Offsets Example

So the first thing to note is that attempting to use any numeric literals for the offsets will cause
assembly errors as they are outside the range 0 to 31 inclusive. This is why we had to use D2 as the
offset and the receiving register for one of the instructions.

The data read into D1 is the 8 bits from baseAddress which is the value $12hex.

The value loaded into register D2 is from 32 bits prior to the address in A1, which corresponds
to the address of negAddress. We therefore get 8 bits from that location loaded into D2 and that
works out at $9Ahex.



30 Chapter 4. Using the MC68020 - Part 2

Finally, D6 and D7 are set up to give a 4 bit width at offset 24 and the 4 bits at that offset from A1 is
the nibble $7hex. That value is loaded into D3.

All the values loaded replace the full 32 bit width of the receiving registers.

Widths

Widths are a lot easier than offsets, especially when working with data in RAM. When specified as
a number, the width is always between 1 and 32. Any other value results in assembly errors.

When a data register is used to specify the width, the actual width value is taken from the bottom
5 bits of the register and will thus be limited to values between 0 and 31. Hang on! Widths are
supposed to be from 1 to 32 bits, not zero to 31. If the register value is zero, then the width is taken
to be 32!

When dealing with memory bit fields, the offset and width can cause the bit field to span over 5
separate consecutive bytes in RAM. The processor can cope happily with this. For example:

bfextu (a1){6:32},d1 spans the 5 bytes from the address in A1 starting at offset 6 of that address
(bit 1), passing through the next three bytes, and ending up in the 5th byte at its bit 2 (inclusive).

Byte 1 Byte 2 Byte 3 Byte 4 Byte 5

7 6 5 4 3 2 1 0 7-0 7-0 7-0 7 6 5 4 3 2 1 0
- - - - - - 1 2 3-10 11-18 19-26 27 28 29 30 31 32 - -

Table 4.2: 5 Byte Bit Field Example

In table 4.2, the top row is the bit numbers in the memory bytes at (A1) onwards. The bottom row
is the bit numbers in the bit field {6:32}. For space reasons the three full bytes in the middle are
shortened.

Lets examine the new instructions.

4.2.2 BFCHG - Test Bit Field and Change

The BFCHG instruction sets the condition codes according to the current value in a bit field at the
specified effective address, then ones-complements the bit field.

For example, a bit field referencing 5 bits starting at bit 5 of D5, would resemble BFCHG D5{26:5}.

The instruction tests the bit field first, then sets the flags as follows before changing the bit field:

• X - Not affected.
• N - Set if the most significant bit of the field is set; cleared otherwise.
• Z - Set if all bits of the field are zero; cleared otherwise.
• V - Always cleared.
• C - Always cleared.

4.2.3 BFCLR - Test Bit Field and Clear

The BFCLR instruction Sets condition codes according to the value in a bit field at the specified
effective address and finally clears the specified bit field.

The instruction tests the bit field and sets the flags as follows:

• X - Not affected.



4.2 Bit Field Instructions 31

• N - Set if the most significant bit of the field is set; cleared otherwise.
• Z - Set if all bits of the field are zero; cleared otherwise.
• V - Always cleared.
• C - Always cleared.

An example to clear the three bits 6, 5 and 4 of the memory address that A1 points to, would be:

BFCLR (A1){1:3}

4.2.4 BFEXTS - Extract Bit Field Signed

The BFEXTS instruction extracts a bit field from the specified effective address location, sign extends
it to 32 bits, and loads the result into the destination data register.

The instruction sets the flags as follows:

• X - Not affected.
• N - Set if the most significant bit of the field is set; cleared otherwise.
• Z - Set if all bits of the field are zero; cleared otherwise.
• V - Always cleared.
• C - Always cleared.

For example, to extract the three bits 6, 5 and 4 of the memory address that A1 points to, into
register D0, with bit 6 indicating the sign, would be:

BFEXTS (A1){1:3},D0

The flags are set according to the value in the bit field moved into D0, in this case. Bit 4 of the byte
would end up in bit zero of D0, bit 5 in bit 1 and bit 6 would be sign extended into all bits from bit
2 to bit 31 (in the normal manner of numbering bits).

4.2.5 BFEXTU - Extract Bit Field Unsigned

The BFEXTU instruction is similar to the BFEXTS instruction above, but is unsigned. It extracts a bit
field from the specified effective address location, zero extends it to 32 bits, and loads the results
into the destination data register.

The instruction sets the flags as follows:

• X - Not affected.
• N - Set if the most significant bit of the field is set; cleared otherwise.
• Z - Set if all bits of the field are zero; cleared otherwise.
• V - Always cleared.
• C - Always cleared.

For example, to extract the three bits 6, 5 and 4 of the memory address that A1 points to, into
register D0, would be:

BFEXTU (A1){1:3},D0

The flags are set according to the value in the bit field moved into D0, in this case. Bit 4 of the byte
would end up in bit zero of D0, bit 5 in bit 1 etc.



32 Chapter 4. Using the MC68020 - Part 2

4.2.6 BFFFO - Find First One in Bit Field

The BFFFO instruction searches the source operand for the most significant bit that is set to a value
of one.

The bit offset of that bit (the bit field offset in the instruction plus the offset of the first one bit in the
bit field) is placed in the specified data register.

If no bits in the bit field are set, the result is the field offset plus the field width.

The instruction sets the flags as follows:

• X - Not affected.
• N - Set if the most significant bit of the field is set; cleared otherwise.
• Z - Set if all bits of the field are zero; cleared otherwise.
• V - Always cleared.
• C - Always cleared.

An example to find the first set bit within the 9 bits of register D0, starting at bit 15 and extending
down to bit 6, setting the result in register D1, would be:

BFFFO D0{16:9},D1.

If there were no set bits in the bit field, the result in D0 would be 16+9 or 25, otherwise it would
be 16+< bit number of set bit >. Bear in mind, the first one bit is the bit number in the bit field
and not the bit number in the register or memory location. The bit numbers in the bit field start
from zero and increase up to the field width minus 1.

This example should help:

1 s t a r t
2 c l r . l d0 ; No b i t s s e t i n D0
3 b f f f o d0 { 1 6 : 9 } , d1 ; No b i t s s e t , so D1=16+9=25
4
5 ; {16 :9} −−−− −−−− − ( B i t F i e l d )
6 ; 0123 4567 8 ( BF O f f s e t )
7 move . l #$300 , d0 ; $0000 0000 0011 0000 0000
8 b f f f o d0 , { 1 6 : 9 } , d1 ; B i t 6 o f BF s e t so D1=16+6=22

Listing 4.3: Example of the BFFFO Instruction

The result is the bit field start plus the offset into the bit field where the most significant set bit is
found. In our bit field, the starting offset is 16. The first set bit in the 9 bits making up the width of
the bit field, is bit number 6 - starting at zero - in the bit field, so the result is 16+6 or 22.

A valid range of values in D1 would be 16+0 through 16+8 if a single bit in any position of the
bit field was set, or 16+9 if no bits in the bit field were set.

If you need to find out exactly which bit in the register that relates to, subtract the result from 31. In
this example, 31−22 gives 9 and indeed, it is bit 9 in the register which is the most significant set
bit.

4.2.7 BFINS - Insert Bit Field

The BFINS instruction inserts a bit field taken from the low-order bits of the specified data register
into a bit field at the effective address location. This means that if you have a 3 bit wide bit field in
the effective address, then the lowest three bits of the specified data register will be copied to that
bit field.



4.3 Converting Character and Decimal Numbers 33

The instruction sets the flags as follows:

• X - Not affected.
• N - Set if the most significant bit of the field is set; cleared otherwise.
• Z - Set if all bits of the field are zero; cleared otherwise.
• V - Always cleared.
• C - Always cleared.

Continuing the example from above, to move the three bits of D0 into a three bit wide bit field of
register D4 in bits 6, 5 and 4, we would use the instruction:

BFINS D0,D4{25:3}

Bit 0 of D0 would end up in bit 4 of D4, bit 1 would be in bit 5 and bit 2 would end up in bit 6.

4.2.8 BFSET - Test Bit Field and Set

The BFSET instruction tests the bit field and sets the flags as follows and then sets all the bits in the
field to 1.

• X - Not affected.
• N - Set if the most significant bit of the field is set; cleared otherwise.
• Z - Set if all bits of the field are zero; cleared otherwise.
• V - Always cleared.
• C - Always cleared.

For example, to set all the bits in bits 6 to 9 (a total of 4 bits) of register D0, we would use the
instruction:

BFSET D0{25:4}

4.2.9 BFTST - Test Bit Field

The BFTST instruction tests the specified bit field and sets the flags as follows:

• X - Not affected.
• N - Set if the most significant bit of the field is set; cleared otherwise.
• Z - Set if all bits of the field are zero; cleared otherwise.
• V - Always cleared.
• C - Always cleared.

For example, to test the bits in the 3 bit wide bit field beginning at bit 13 of D4 (that’s bit 13
numbering in the normal manner) we need to specify the following instruction:

BFTST D4{18:3}

4.3 Converting Character and Decimal Numbers

The BBQL and the MC68008 has always had the ability to add, subtract and negate Binary Coded
Decimal numbers. However, it was never easy to create such things as there were no instructions
that would convert an ASCII (or EBCDIC) string of digits, for example, into a BCD format, and
vice versa.

With the MC68020 we have the PACK and UNPK instructions to help us do exactly that.



34 Chapter 4. Using the MC68020 - Part 2

For other character code sets, the instructions take an immediate data portion, which is added to the
characters when encoding, and subtracted when decoding. For ASCII or EBCDIC, this immediate
data must be zero.

The PACK instruction has the two following formats:

PACK Ds,Dd,#data
PACK -(As),-(Ad),#data

The Ds or (As) registers point at the source text, while the Dd or (Ad) registers point at the
destination.

The instruction will only convert 2 bytes of the source into a single byte in the destination.

For example, if using the data register version, (D0.L) contains $31323334hex, which is the ASCII
character representation of 1234, it takes up the entire 32 bits of the register. All those ‘3’ nibbles
are effectively wasted space.

The instruction PACK D0,D1,#0 will convert the ASCII in D0 into the BCD value $34hex in D1.B.

To convert a string of digits, you need to use the in memory version, or do a few shifts along the
way.

1 s t a r t
2 l e a a s c i i D i g i t s +8 , a1 ; Source ASCII s t r i n g
3 l e a b c d D i g i t s +4 , a2 ; D e s t i n a t i o n BCD b u f f e r
4 moveq #3 , d2 ; 4 p a i r s o f d i g i t s t o c o n v e r t
5
6 loop
7 pack −(a1 ) ,−( a2 ) ,#0 ; Conve r t two b y t e s
8 db ra d2 , l oop ; Loop f o r more
9 . . . ; Done , b c d D i g i t s = $12345678

10
11 a s c i i D i g i t s
12 dc . b ’12345678 ’ ; = $3132333435363738
13
14 b c d D i g i t s
15 ds . l 1 ; Space f o r r e s u l t

Listing 4.4: Example of the PACK instruction

This code converts the 8 ASCII digits at asciiDigits - in reverse order - from $3132333435363738hex
into a long word at bcdDigits which will end up containing the value $12345678hex thus, packing
64 bits of ASCII data into 32 bits of BCD data.

The UNPK instruction has two formats:

UNPK Ds,Dd,#data
UNPK -(As),-(Ad),#data

And is simply the reverse of the PACK instruction. It converts a single byte into two separate ASCII
(or EBCDIC) characters.

1 s t a r t
2 l e a b c d D i g i t s +4 , a1 ; Source BCD b u f f e r
3 l e a a s c i i D i g i t s +8 , a2 ; D e s t i n a t i o n ASCII s t r i n g
4 moveq #3 , d2 ; 4 BCD d i g i t s t o c o n v e r t
5
6 loop
7 unpk −(a1 ) ,−( a2 ) ,#0 ; Conve r t two b y t e s



4.4 Existing Instruction Upgrades 35

8 db ra d2 , l oop ; Loop f o r more
9 . . . ; Done , a s c i i D i g i t s = 12345678

10
11 a s c i i D i g i t s
12 ds . b 8 ; Space f o r ASCII r e s u l t
13
14 b c d D i g i t s
15 dc . l $12345678 ; Source BCD number

Listing 4.5: Example of the UNPK instruction

Once again, the data are converted in reverse so the initial buffer pointers have to be one past the
end of the buffers’ last character.

The long word at bcdDigits, $12345678hex is converted back into the string $3132333435363738hex
or ASCII ‘12345678’ by the above code.

4.4 Existing Instruction Upgrades

Some instructions have changed since their usage in the good old MC68008 installed in the original
BBQL. These are discussed below.

4.4.1 Branching and Linking

Currently, on the BBQL, we can have short (8 bit) or word branches in the Bcc, BRA and BSR
instructions. These are two’s compliment (aka signed) displacements allowing for forward and
backward branching. In the MC68020 we now have a long sized branch as well with all 32 bits
being permitted.

Using BSR as an example, we now have the following:

BSR.S and BSR.B - this form always assembles to an 8 bit displacement branch which requires two
bytes in the binary code.

BSR.W - this form always assembles to a 16 bit displacement branch which requires four bytes in
the binary code.

BSR.L - this form always assembles to a 32 bit displacement branch which requires six bytes in the
binary code.

If you don’t specify a size for the branch instruction, then it depends on whether your assembler
has been configured to always use a 16 bit displacement or if you, like me, have configured it to try
an 8 bit displacement and error out if the displacement is too far.

Note, the various Decrement and Branch Unless Condition (DBcc) instructions have not changed,
they are restricted to a word sized, 16 bit displacement as before.

The LINK instruction now also has a 32 bit displacement. If you use the old instruction LINK
An,#displacement, you continue to get the 16 bit displacement version. You can now. however,
also specify a size of .W to force a 16 bit displacement. LINK.W An,#displacement.

To force a 32 bit displacement, specify a size of .L as in LINK.L An,#displacement.



36 Chapter 4. Using the MC68020 - Part 2

4.4.2 Division

On the BBQL we have played around with the DIVU and DIVS instructions which are word sized in
that they return a pair of 16 bit values one for the quotient and one for the remainder. Effectively, a
32 bit value is divided by a 16 bit value to return a pair of 16 bit values in a single data register. The
top word is the remainder and the low word is the quotient.

The format of these instructions was always like DIVS #1234,D0 and there was no need to specify
a size - .B, .W or .L - because it was always .W.

On the MC68020 we now have the ability to divide 32 and 64 bit numbers by 32 bit ones, resulting
in a 32 bit number for the quotient and another for the remainder. We still have the existing word
sized divides, but now you need to specify a size of ‘.W’ to indicate your wish to use the old style.
Assemblers will still accept the old style of missing out the size specifier and act accordingly to
assemble the old word sized instructions.

There are a further three assembly formats for the divide instructions:

DIVS <EA>,Dn - This form divides a 32 bit long word by another 32 bit long word. The result is
a 32 bit quotient in the specified register, with the remainder being discarded. A handy integer
division instruction.

DIVS <EA>,Dr:Dq - This form divides a 64 bit quad word (in any two data registers) by a 32 bit
word taken from the effective addresss. The result is a long-word quotient in the Dq register, and a
long-word remainder in the Dr register.

DIVSL.L <EA>,Dr:Dq - This form divides a 32 bit long word by another 32 bit long word. The
result is a 32 bit quotient in the Dq register, and a 32 bit remainder in the Dr register. You should
note that this instructions has an ‘L’ tagged on as well as the ‘.L’ for the size. DIVSL.

Although I’ve used DIVS in the above examples, the DIVU instructions are identical.

Two special conditions may arise during division:

• Division by zero causes a trap.
• Overflow may be detected and set before the instruction completes. If the instruction detects

an overflow, it sets the overflow condition code, and the operands are unaffected.

The flags are set as follows:

• X - Not affected.
• N - Set if the quotient is negative; cleared otherwise; undefined if overflow or divide by zero

occurs.
• Z - Set if the quotient is zero; cleared otherwise; undefined if overflow or divide by zero

occurs.
• V - Set if division overflow occurs; undefined if divide by zero occurs; cleared otherwise.
• C - Always cleared.

4.4.3 Multiplication

Upgrades to the MULU and MULS instructions are similar to those of the division instructions above.
Whereas up until now we have been limited to multiplying two 16 bit words to get a 32 bit result,
we now have the ability to multiply two 32 bit long words together to give either a 32 bit long word
result, or a 64 bit quad word result.

MULS.L <EA>,Dn - this form multiplies the 32 bit effective address value by the data register



4.4 Existing Instruction Upgrades 37

and stores the lowest 32 bits of the result in the data register. The upper 32 bits of the result are
discarded.

MULS.L <EA>,Dh-Dl - this form multiplies the 32 bit effective address value by the data register
and stores the highest 32 bits of theb result in the Dh register and the lowest 32 bits of the result in
the Dl register. Nothing is discared.

The multiplication instructions set the flags as follows:

• X - Not affected.
• N - Set if the result is negative; cleared otherwise.
• Z - Set if the result is zero; cleared otherwise.
• V - Set if overflow; cleared otherwise.
• C - Always cleared.

For MULS, overflow, setting V = 1, can occur only when multiplying 32-bit operands to yield a
32-bit result. Overflow occurs if the highest 32 bits of the quad-word product are not the sign
extension of the lowest 32 bits.

For MULU, overflow, setting V = 1, can occur only when multiplying 32-bit operands to yield a
32-bit result. Overflow occurs if any of the high-order 32 bits of the quad-word product are not
equal to zero.

Overflow cannot occur when the product is a 64 bit quad word.

4.4.4 MOVEC - Move To/From Control Register

This instruction is only available on the has two separate formats:

MOVEC Rc,Rn MOVEC Rn,Rc

The instruction is privileged, so must be run in supervisor mode.

Register Rc is a control register, see table 4.3, while register Rn is a normal register.

Moves the contents of the specified control register (Rc) to the specified general register (Rn) or
copies the contents of the specified general register to the specified control register.

This is always a 32-bit transfer, even though the control register may be implemented with fewer
bits. Unimplemented bits are read as zeros.

What is a control register? On the MC68020 we have the following control registers:

Control Register Description
SFC Source Function Code
DFC Destination Function Code
USP User Stack Pointer
VBR Vector Base Register

CACR Cache Control Register
CAAR Cache Address Register
MSP Master Stack Pointer
ISP Interrupt Stack Pointer

Table 4.3: MC68020 Control Registers

The flags are not affected by these instructions.



38 Chapter 4. Using the MC68020 - Part 2

• X - Not affected.
• N - Not affected.
• Z - Not affected.
• V - Not affected.
• C - Not affected.

4.5 Other New Instructions

4.5.1 BKPT - Hardware Breakpoint Support

This is a new instruction (from the MC68010 onwards) which is useful for hardware debuggers and
is unlikely to be of any use in QL programs. However, I have been wrong in the past!

The manual has this to say about the instruction:

For the MC68010, a breakpoint acknowledge bus cycle is run with function codes driven high
and zeros on all address lines. Whether the breakpoint acknowledge bus cycle is terminated with
DTACK, BERR, or V PA, the processor always takes an illegal instruction exception. During
exception processing, a debug monitor can distinguish different software breakpoints by decoding
the field in the BKPT instruction.

For the MC68000 and MC680084, the breakpoint cycle is not run, but an illegal instruction
exception is taken.

For the MC68020, MC68030, and CPU32, a breakpoint acknowledge bus cycle is executed with
the immediate data (value 0 – 7) on bits 2 – 4 of the address bus and zeros on bits 0 and 1 of the
address bus. The breakpoint acknowledge bus cycle accesses the CPU space, addressing type 0, and
provides the breakpoint number specified by the instruction on address lines A2 – A4. If the external
hardware terminates the cycle with DSACKx or ST ERM, the data on the bus (an instruction word)
is inserted into the instruction pipe and is executed after the breakpoint instruction. The breakpoint
instruction requires a word to be transferred so, if the first bus cycle accesses an 8 bit port, a second
bus cycle is required. If the external logic terminates the breakpoint acknowledge bus cycle with
BERR (i.e. no instruction word available), the processor takes an illegal instruction exception.

For the MC68040, this instruction executes a breakpoint acknowledge bus cycle. Regardless of the
cycle termination, the MC68040 takes an illegal instruction exception.

For more information on the breakpoint instruction refer to the appropriate user’s manual on bus
operation.

This instruction supports breakpoints for debug monitors and real-time hardware emulators.

So that’s clear then? It’s hardware, only Dave and Nasta (and a few others) will understand any of
the above!

The flags are not affected.

• X - Not affected.
• N - Not affected.
• Z - Not affected.
• V - Not affected.
• C - Not affected.

4Excuse me? My 68008 manual, a Motorola official one, makes no mention of this instruction for either the MC68008
or the MC68010!



4.5 Other New Instructions 39

4.5.2 CALLM - Call Module

The CALLM instruction saves the Current Module State on the stack and loads a new module state
from the destination.

The format of the instruction is:

CALLM #data,<EA>

This instruction, and RTM require external hardware to be effective.

The effective address of the instruction is the location of an external module descriptor.

A module frame is created on the top of the stack, and the current module state is saved in the
frame. (Program counter etc.)

The immediate operand specifies the number of bytes of arguments to be passed to the called
module and allows RTM to tidy the stack afterwards.

A new module state is loaded from the descriptor addressed by the effective address.

The flags are not affected.

• X - Not affected.
• N - Not affected.
• Z - Not affected.
• V - Not affected.
• C - Not affected.

See also RTM which is used to return from a CALLM. Also note that these two instructions have been
removed from the MC68040 onwards.

4.5.3 CAS and CAS2 - Compare and Swap

The format of the CAS instruction is:

CAS.size Dc,Du,<EA>

The size can be .B, .W or .L.

The CAS, Compare and Swap, instruction subtracts the value in the ‘compare’ register (Dc) from
the effective address which is the destination also, and sets the condition codes accordingly.

If the Z flag gets set, the value in the ‘update’ register (Du) is moved to the destination.

If the Z flag was not set by the instruction, the contents of the effective address are moved to the Dc
register.

The CAS instruction sets the flags as follows:

• X - Not affected.
• N - Set if the most significant bit of the field is set; cleared otherwise.
• Z - Set if the result is zero; cleared otherwise.
• V - Set if the compare generates an overflow; cleared otherwise.
• C - Set if the compare generates a carry; cleared otherwise.

An example of the CAS instruction is as follows. I admit it’s a little contrived, but it shows what
happens.

1 s t a r t
2 l e a l a b e l , a1 ; Where t h e compared d a t a l i v e s



40 Chapter 4. Using the MC68020 - Part 2

3 moveq #2 , d2 ; Dc = compare r e g i s t e r
4 move . l # $87654321 , d3 ; Du = u p d a t e r e g i s t e r
5 c a s . l d2 , d3 , ( a1 ) ; Compare ( A1 ) wi th D2
6 ; ; IF ( A1 ) = D2 THEN
7 ; ; LET ( A1 ) = D3
8 ; ; ELSE
9 ; ; LET D2 = ( A1 )

10 ; ; END IF
11 c a s . l d2 , d3 , ( a1 ) ; Compare ( A1 ) wi th D2 a g a i n
12 . . .
13 l a b e l
14 dc . l $1234

Listing 4.6: Example of the CAS Instruction

So, in the above, the first CAS compares the value at (A1) which is $00001234hex with the value
in D2 which is $00000002hex and they are not equal, so D2 gets loaded with the value at (A1) and
becomes $00001234hex.

The second CAS compares the value at (A1) which is still $00001234hex with the value in D2 which
is now also $00001234hex and they are obviously equal, so the long word at (A1) gets set to the
value in D3 which happens to be $87654321hex.

The CAS2 instruction is similar, except that it uses two ‘compare’ registers and two ‘update’ registers.
The format is:

CAS2.size Dc1:Dc2,Du1:Du2,(Rn1):(Rn2)

This instruction compares memory operand 1 (Rn1) to compare operand 1 (Dc1). If the operands
are equal, the instruction compares memory operand 2 (Rn2) to compare operand 2 (Dc2). If these
operands are also equal, the instruction writes the update operands (Du1 and Du2) to the memory
operands (Rn1 and Rn2).

If either comparison fails, the instruction writes the memory operands (Rn1 and Rn2) to the compare
operands (Dc1 and Dc2).

The size can be .W or .L.

The CAS2 instruction sets the flags as follows:

• X - Not affected.
• N - Set if the most significant bit of the field is set; cleared otherwise.
• Z - Set if the result is zero; cleared otherwise.
• V - Set if the compare generates an overflow; cleared otherwise.
• C - Set if the compare generates a carry; cleared otherwise.

Both CAS and CAS2 instructions access memory using locked or read-modify-write transfer se-
quences, providing a means of synchronizing several processors in a multi-processor system.

4.5.4 CHK2 and CMP2 - Check/Compare Register Against Bounds

The CHK2 and CMP2 are similar instructions except that while the latter simply sets the condition
codes in the status register depending on the results of the comparison, the former traps out through
an exception vector. A tad excessive if you ask me! ;-)

The CHK2 instruction has the format:

CHK2.size <EA>,Rn



4.5 Other New Instructions 41

It looks in memory at the effective address specified for two bytes, words or long words and
compares the specified register, which can be a data or address register, with the two values.

The two values are the (signed) lower and upper bounds for the comparison. The data at the
address specified in the effective address is the lower bound. The data at that address plus 1, 2 or 4,
depending on the size, is the upper bound.

The flags are set as follows:

• X - Not affected.
• N - Undefined.
• Z - Set if Rn equals either boundary value; cleared otherwise.
• V - Undefined.
• C - Set is Rn is out of range; cleared otherwise.

In operation, if the register value is equal to, or falls between the two bounds, then execution
continues as normal and the C flag is cleared. If the register value happens to equal one of the
bounds, then the Z flag will be set.

If the register value is out of bounds, then the exception is raised. A tad harsh, so let’s look at a
gentler approach. The CMP2 instruction.

This instruction takes the format:

CMP2.size <EA>,Rn

It sets the flags exactly as the CHK2 instruction does.

It operates exactly as the CHK2 instruction just described, but does not raise an exception if the
value is out of bounds. This can be useful when comparing a value in a register to determine if it is
a digit, for example, as per the following snippet:

1 s t a r t
2 l e a i n p u t B u f f e r , a1 ; Where we f i n d u s e r i n p u t
3
4 checkLoop
5 move . b ( a1 ) + , d0 ; Grab one c h a r a c t e r
6 cmp2 . b d i g i t B o u n d s , d0 ; Got a d i g i t ?
7 bcc . s g o t D i g i t ; Yes , h a n d l e i t
8 cmpi . b #10 , d0 ; No , check f o r a l i n e f e e d ?
9 beq . s a l l D o n e ; End of i n p u t

10 . . . ; Not a d i g i t , do some th ing e l s e
11 b r a . s checkLoop ; Keep go ing
12
13 a l l D o n e
14 moveq #0 , d0 ; S i g n a l done
15 r t s ; Back t o c a l l e r
16
17 g o t D i g i t s
18 . . . ; Handle d i g i t i n p u t h e r e
19 b r a . s checkLoop ; Loop around
20
21 d i g i t B o u n d s
22 dc . b ’0 ’ , ’ 9 ’ ; Range of v a l i d d i g i t s

Listing 4.7: Example of the CMP2 Instruction

This is much less hassle than checking the character in D0 with a ‘0’ and skipping out if the flags
show that D0 was lower than a ‘0’ then doing something similar for a ‘9’. I also happen to think



42 Chapter 4. Using the MC68020 - Part 2

that it’s a lot easier to read the code done in this way.

4.5.5 RTM - Return From Module

This instruction, and CALLM require external hardware to be effective.

This instruction, is used to terminate a CALLM instruction. It reloads the module state from the stack.
The instruction format is:

RTM Rn

The register can be a data or address register.

A previously saved module state is reloaded from the top of stack. After the module state consisting
of program counter, status word etc, is retrieved from the top of the stack, the caller’s stack pointer
is incremented by the argument count value in the module state.

Given that this instruction has been removed from the MC68040 onwards, there’s probably not
much use for it in QL programs. See also CALLM.

The flags are set according to the word on the stack.

4.5.6 Coprocessor Instructions

There are numerous floating point co-processor instructions which, for now at least, are beyond
the scope of the eComic!5 I’m pretty certain that George Gwilt, my faithful reader, has written a
document on these instructions. The document can be found on the Sinclair QL Homepage.6

5I don’t have a genuine MC680020 to play with, only QPC.
6http://www.dilwyn.me.uk/docs/asm/fpu.zip

http://www.dilwyn.me.uk/docs/asm/fpu.zip
http://www.dilwyn.me.uk/docs/asm/fpu.zip


5. Improving Langton’s Ant

So, given that we now fully understand these new fangled 680020 instructions, can we improve
Langton’s Ant?

5.1 A 68020 Improvement, Perhaps?

As presented earlier in this issue, the code will actually assemble using the GWASL assembler that
we have been using up until now in this series1.

Given how short the code above is, relative to some of the stuff in the last issue for example, can it
be improved using the 68020 processor?

In a word, yes. We have to work out a number of things each time through the loop:

• The address of the start of the row of bytes where the current cell can be found;
• The Address of the byte, within the row, representing the current cell;
• The Address of the bit, within the byte, representing the current cell;

We need this to enable us to determine the current cell’s colour and from that where the next cell
will be, plus we also need to change the colour to black or white according to whichever rule we
activated.

The following code extract is where we work out the bit we need to set or clear in the ant’s bitmap.

255 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
256 ; F i r s t work o u t t h e b i t number i n t h e c e l l ’ s b y t e . Th i s i s s im p ly
257 ; t h e 7 − ( a c r o s s c o o r d i n a t e MOD 8) .
258 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
259 bi tNumber
260 move . l d2 , d6 ; Copy Across | Down c o o r d s

1And indeed, since I first started writing for QL Today, more years ago than I care to even begin to attempt to
remember!



44 Chapter 5. Improving Langton’s Ant

261 swap d6 ; Down | Across
262 move .w d6 , d4 ; Copy Across c o o r d i n a t e t o D4
263 a n d i .w #7 , d4 ; Mod 8 = 0 t o 7
264 neg .w d4 ; −7 t o 0
265 addq .w #7 , d4 ; D4 .W = b i t number
266
267 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
268 ; The b y t e w i t h i n t h e row , which we c a l c u l a t e soon , i s c a l c u l a t e d as
269 ; ( a c r o s s c o o r d i n a t e DIV 8) . Easy .
270 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
271 byteNumber
272 l s r .w #3 , d6 ; Across d i v 8
273
274 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
275 ; The c o r r e c t row number i n t h e c e l l s b i tmap i s t h e Down c o o r d i n a t e
276 ; m u l t i p l e d by ( s i z e _ x DIV 8) . Th i s shou ldn ’ t exceed a word s i z e . The
277 ; r e s u l t i s added t o A3 which i s t h e s t a r t a d d r e s s o f t h e c e l l s
278 ; b i tmap and l o a d e d i n t o A4 as t h e b y t e a d d r e s s t h a t we want .
279 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
280 doRow
281 move .w # s i z e _ x , d7 ; P i x e l s a c r o s s
282 l s r .w #3 , d7 ; Now b y t e s a c r o s s
283 mulu d2 , d7 ; Times down c o o r d i n a t e
284 l e a 0 ( a3 , d7 .w) , a4 ; Address o f c o r r e c t row
285 adda .w d6 , a4 ; C o r r e c t b y t e i n row
286
287 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
288 ; Given t h e b y t e a d d r e s s i n A4 and t h e b i t number i n D4 , we can now
289 ; t e s t t h a t i n d i v i d u a l b i t . A z e r o i s w h i t e w h i l e a 1 i s b l a c k .
290 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
291 b t s t d4 , ( a4 ) ; 0 = whi te , 1 = b l a c k

Listing 5.1: Langtons Ant - Existing Bitmap Calculation

We can, should we wish to, replace all of the above using a bit field test instruction, or BFTST as
described in BFTST - Test Bit Field on page 33.

Once you have read the introduction to bit fields - Bit Fields on page 28 you will realise that we no
longer need to effectively reverse the bit numbering, as bit fields number from 0 upwards, but bit
zero is the most significant bit!

Equally, we only need to calculate the bit number within the entire bitfield, we don’t need to work
out a bit number, a byte number and a row number first.

5.1.1 Bit Field Calculations

To calculate the bit number we need, is now quite simple - given that bit fields start numbering at
the most significant bit. The calculation is:

across+(down∗x_size)

That’s it. If, for example we are on the very first bit, that would be bit zero in a bit field, the
coordinates would both be 0, 0 for across and down, so this is 0+(0∗256) which is still zero, and
is correct.

If we were at the far right of the very first line, we are on the 512th bit in the bitmap, and that comes
from the coordinates being 511, 0, giving 511+(0∗512) which is 511, and that is indeed the bit



5.1 A 68020 Improvement, Perhaps? 45

number of the 512th bit.

And so on down and across the bitmap. In our ant’s world, there are 512 by 256 cells, so we need
that many bits, which works out at 131,072 bits. (16,384 bytes)

This means that for the very bottom right coordinate, 511, 255, the bit will be 511+(255∗512)
which works out at 131,071 and yes, that’s the bit number of the 131,072nd bit in the bitmap.

Currently we calculate a bit number in D4 of the byte at the address held in A4 for the current cell.
Using the 68020 we can change all of the above code to the following.

255 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
256 ; C a l c u l a t e t h e b i t number w i t h i n t h e c e l l s b i t f i e l d . Th i s i s s im p ly
257 ; a c r o s s + ( down * wid th ) .
258 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
259 bi tNumber
260 moveq # x _ s i z e , d4 ; Width
261 mulu d2 , d4 ; Width * Down
262 swap d2 ; Low word = Across
263 add .w d2 , d4 ; Across + (Down * Width )
264 swap d2 ; R e s t o r e
265 b f t s t ( a3 ) { d4 : 1 } ; T e s t b i t

Listing 5.2: Langtons Ant - 68020 Bitmap Calculation

As you can see, this chops a whole pile of code out and reduces the number of instructions required
to calculate which bit we need to be looking at and setting, or clearing, as part of the rules for the
ant. It also frees up D6 and A4 too, which might come in handy elsewhere - for saving D5 perhaps!

Obviously I now need to update the Register Usage comments - but I’m not showing that here.

Register A3, if you remember, was initially set to point at the Cells bitmap. So the bftst
(a3){d4:1} instruction says to start at the address held in register A3 and count from the most
significant bit at that address, D4 bits along, then test the single bit that you arrive at.

After this, we also need to update the code for the two rules as we must set or clear the bit
representing the current cell. The existing code for the two rules is as follows.

293 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
294 ; Rule 1 : I f t h e c e l l i s whi te , t u r n i t b l ack , r i g h t t u r n , walk on .
295 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
296 ru l eOne
297 bne . s ruleTwo
298 b s e t d4 , ( a4 ) ; Turn i t b l a c k i n t h e b i tmap
299 moveq # b lack , d1 ; Colour f o r BLOCK command
300 subq . b #1 , d5 ; D i r e c t i o n − 1 = r i g h t
301 b r a . s d o D i r e c t i o n ; P r e p a r e t o walk on

Listing 5.3: Langtons Ant - Existing Rule 1

303 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
304 ; Rule 2 : I f t h e c e l l i s b lack , t u r n i t whi te , l e f t t u r n , walk on .
305 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
306 ruleTwo
307 b c l r d4 , ( a4 ) ; Turn i t w h i t e i n t h e b i tmap
308 moveq # whi te , d1 ; Co lour f o r BLOCK command
309 addq . b #1 , d5 ; D i r e c t i o n + 1 = l e f t

Listing 5.4: Langtons Ant - Existing Rule 2



46 Chapter 5. Improving Langton’s Ant

These would be changed to allow them to use the BFSET and BFCLR instructions, as follows:

293 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
294 ; Rule 1 : I f t h e c e l l i s whi te , t u r n i t b l ack , r i g h t t u r n , walk on .
295 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
296 ru l eOne
297 bne . s ruleTwo
298 b f s e t ( a3 ) { d4 : 1 } ; Turn i t b l a c k i n t h e b i tmap
299 moveq # b lack , d1 ; Colour f o r BLOCK command
300 subq . b #1 , d5 ; D i r e c t i o n − 1 = r i g h t
301 b r a . s d o D i r e c t i o n ; P r e p a r e t o walk on

Listing 5.5: Langtons Ant - 68020 Rule 1

303 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
304 ; Rule 2 : I f t h e c e l l i s b lack , t u r n i t whi te , l e f t t u r n , walk on .
305 ;−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−
306 ruleTwo
307 b f c l r ( a3 ) { d4 : 1 } ; Turn i t w h i t e i n t h e b i tmap
308 moveq # whi te , d1 ; Co lour f o r BLOCK command
309 addq . b #1 , d5 ; D i r e c t i o n + 1 = l e f t

Listing 5.6: Langtons Ant - 68020 Rule 2

So a couple of easy changes and we have a smaller source program to type in, a smaller executable
program - in my case, by a whole 34 bytes - because we took advantage of the 68020’s new
instructions.

Happy anting.



6. This eMagazine is now on Github

As of a few days/weeks/months or even years ago, depending on when you read this, the source
code for the magazine1 can be found on https://github.com.

If you go there (by clicking the link above) then you will find all the previous issues, except for the
first one. That one was created using a different system very unlike the current system, and I have
not yet converted it to use latex. Maybe one day I will - time permitting.

Hopefully, I’ll get the source code for the various listings explained in the eMagazine, up there
soon too.

Have fun.

1But not yet the sources for the listings.

https://github.com/NormanDunbar/QLAssemblyLanguageMagazine




7. Image Credits

The front cover image on this ePeriodical is taken from the book Kunstformen der Natur by German
biologist Ernst Haeckel. The book was published between 1899 and 1904. The image used is of
various Polycystines which are a specific kind of micro-fossil.

I have also cropped the image for use on each chapter heading page.

You can read about Polycystines on Wikipedia and there is a brief overview of the above book,
also on Wikipedia, which shows a number of other images taken from the book. (Some of which I
considered before choosing the current one!)

Polycystines have absolutely nothing to do with the QL or computing in general - in fact, I suspect
they died out before electricity was invented - but I liked the image, and decided that it would make
a good cover for the book and a decent enough chapter heading image too.

Not that I am suggesting, in any way whatsoever, that we QL fans are ancient.

https://en.wikipedia.org/wiki/Polycystine
https://en.wikipedia.org/wiki/Kunstformen_der_Natur

	1 Preface
	1.1 Feedback
	1.2 Subscribing to The Mailing List
	1.3 Contacting The Mailing List

	2 Feedback on Issue 4
	2.1 ASMReformat Comments

	3 Langton's Ant
	3.0.1 The Program Listing

	4 Using the MC68020 - Part 2
	4.1 Word and Long Memory Access Need Not Be Even!
	4.2 Bit Field Instructions
	4.2.1 Bit Fields
	4.2.2 BFCHG - Test Bit Field and Change
	4.2.3 BFCLR - Test Bit Field and Clear
	4.2.4 BFEXTS - Extract Bit Field Signed
	4.2.5 BFEXTU - Extract Bit Field Unsigned
	4.2.6 BFFFO - Find First One in Bit Field
	4.2.7 BFINS - Insert Bit Field
	4.2.8 BFSET - Test Bit Field and Set
	4.2.9 BFTST - Test Bit Field

	4.3 Converting Character and Decimal Numbers
	4.4 Existing Instruction Upgrades
	4.4.1 Branching and Linking
	4.4.2 Division
	4.4.3 Multiplication
	4.4.4 MOVEC - Move To/From Control Register

	4.5 Other New Instructions
	4.5.1 BKPT - Hardware Breakpoint Support
	4.5.2 CALLM - Call Module
	4.5.3 CAS and CAS2 - Compare and Swap
	4.5.4 CHK2 and CMP2 - Check/Compare Register Against Bounds
	4.5.5 RTM - Return From Module
	4.5.6 Coprocessor Instructions


	5 Improving Langton's Ant
	5.1 A 68020 Improvement, Perhaps?
	5.1.1 Bit Field Calculations


	6 This eMagazine is now on Github
	7 Image Credits

